Utilizing Moderate Resolution Satellite Observations to Map Algae in the Grand Lake Watershed

Abu Mansaray, Doctoral Candidate
Environmental Science Graduate Program
Oklahoma State University

Oklahoma Governor’s Water Conference
Embassy Suits, Norman, Oklahoma
November 1st 2017
Why water quality monitoring?

Water quality status

Point and nonpoint source pollution

Enforce laws and regulations

Water quality impairment

Enforce laws and regulations
Problems with conventional monitoring routines

- Limited resources
- Spatial limitations
- Temporal limitations
- *Accessibility issues
- *Unsafe areas

*Not observed in Grand Lake

Studies have used Earth Observation satellites to overcome these challenges
Why use satellites for monitoring algae?
About blue-green algae (BGA)

- Also known as cyanobacteria
- Microscopic organisms that live in water
- Too small to be seen, but can form visible algal blooms
- Blooms form in warm, slow-moving waters rich in nutrients
- Blooms usually occur in late summer or early fall
- The blooms can be blue, bright green, brown, or red
- Some blooms may not affect the appearance of the water
- As algae in the blooms die, water may have unpleasant odor

For more information: Oklahoma State Department of Health (OSDH) website
Exposure to BGA

- Skin Exposure: rash, hives, or skin blisters.
- Inhalation: runny eyes, runny nose, sore throat, asthma like symptoms, allergic reactions
- Ingestion: Acute, severe gastroenteritis (stomach cramps, nausea, diarrhea or vomiting)
- It may take hours or days for liver toxicity to show up in humans or animals
- Neurotoxicity symptoms may appear within 15 to 20 minutes of exposure.
- Medical care is supportive
- The Oklahoma State Department of Health (OSDH) recommends: avoid water when you see symptoms of BGA, look for and obey alerts
BGA in the Grand Lake Watershed!

Grand Lake, Oklahoma. June-July 2011

Grand Lake, Oklahoma. June-July 2011

Marion Lake, Kansas. May 2004
Lake was shut down on July 4th!
The need for a tool to guide monitoring priorities
Objective

In-situ Chl-a & BGA data + Landsat & Sentinel-2 data

Temporally & Spatially coincident

Algorithm

Mapping tool for Grand River Dam Authority

Chl-a: Chlorophyll a
Area of interest: The Grand Lake Watershed
Monitoring Reservoirs
Area of interest: Landsat scenes (WRS)

Oklahoma and Kansas share some path/row combinations

WRS: World Reference System
Water Quality Sampling: 2015, 2016, 2017

1. Sample dates
 - Temporally coincident satellite overpass
 - Sampling begins just prior to satellite overpass and continues for a short period after

2. Alternative
 - +/- 2 days individual satellite overpasses (acceptable)
 - Assumes no rainfall/runoff event
Water quality sampling
Image Acquisition and Processing

- **EROS Center**
 - Retrieves and processes images

- **USGS: Landsat**
 - Provide images via website
 - Free of cost

EROS: Earth Resources and Observation Science
USGS: United States Geological Surveys
Building the mapping tool

- Download from USGS website
- Image processing
- Extract information from image
- Build relationships between spectral and in-situ data
- Validate the relationships
- Develop computer algorithms for the relationships
- Integrate into mapping software for developing algae maps
Data validation – Lab & Probe Comparisons

- All measures of algal biomass were correlated
- Extracted chlorophyll, laboratory fluorescence, probe fluorescence
Data validation – Probe Comparisons

Correlations between OSU and GRDA probes were also good
Data validation – Band Comparisons (Landsat 7: 7/26/11)

Turbidity reflects these types of relationships
How best is this pattern reflected in spectral terms?

Data validation (Grand Lake OK, Landsat 8: 7/15)
Whole Lake (7/2015 image)

Riverine Zone (7/2015 image)

Expected band relationships for Turbidity

$R^2 = 0.5908$
The observed conditions show valid relationships for turbidity. The graph shows the correlation between Band 3 (Green) and Turbidity (Landsat 8), with an R^2 value of 0.7365.
What about Algae?

http://biologicalexceptions.blogspot.com/2013/06/the-colors-of-alien-plants.html

http://www.seos-project.eu/modules/marinepollution/marinepollution-c03-p05.html
Using percent BV

No. of brightness values (BV) = \(2^\text{bits}\)

- Landsat 8 = 16 bits (65,536 BVs)
- Highest BV = 8,734.373 (13.3% compared to ~3%)
- Reliable predictor of algae?
- Note: BV \neq \text{Reflectance}
Some in-situ Data

Landsat Overpass Date: Grand Lake

No sampling during winter

Ch-a - μg/L

DREAM
DRIP
DROWN
ELK
GRAND
HONEY
HORSE
P DAM
SAIL
SHANG
TREE
WOOD

No sampling during winter
Some in-situ Data

No sampling during winter

Satellite overpass dates

Secchi Disk (m)

Site
- DREAM
- DRIP
- DROWN
- DUCK
- ELK
- GRAND
- HONEY
- HORSE
- P DAM
- SAIL
- SHANG
- TREE
- WOOD

Site No sampling during winter
Moving forward

National level: Collaborate with Federal Agencies (NASA, USGS, EPA)

State/Regional level:
- Build product for GRDA
- Customize product to support monitoring priorities in OK and the region
Research team
Dr. Scott Stoodley, Oklahoma State University
Dr. Andrew Dzialowski, Oklahoma State University
Dr. Daniel Storm, Oklahoma State University
Dr. Nathhan Torbick, Applied Geosolutions

Research Grant: Grand River Dam Authority (GRDA)
Dr. Darrell Townsend, Steve Nikolai, and Dr. Rich Zamor
References

Thank you!