Enhanced Aquifer Recharge Demonstration Project

Governor's Water Conference
December 6, 2018
Midwest City, OK

Guy W. Sewell, Ph.D., BCES
Director of Research Oka’ Institute
Aquifer Recharge
Aquifer Storage and Recovery

• *Artificial recharge* (AR) and *aquifer storage and recovery* (ASR) are processes that convey water underground. These processes replenish ground water stored in aquifers for beneficial purposes.

• Although the terms are often used interchangeably, they are separate processes with distinct objectives.

 – AR is used to replenish water in aquifers to achieve system management outcomes

 – ASR is used to store water which is later recovered for reuse, usually through the same injection/introduction point

https://www.epa.gov/uic/aquifer-recharge-and-aquifer-storage-and-recovery
Oklahoma Land Use Patterns

Surface Area, by Land Cover/Use, 2012

<table>
<thead>
<tr>
<th>Land Cover/Use</th>
<th>Area (acres)</th>
<th>Area (mi²)</th>
<th>% Total Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed</td>
<td>2,187,300</td>
<td>3,400</td>
<td>5%</td>
</tr>
<tr>
<td>Rural</td>
<td>40,267,800</td>
<td>63,000</td>
<td>95%</td>
</tr>
<tr>
<td>Total*</td>
<td>42,455,100</td>
<td>66,000</td>
<td>100%</td>
</tr>
</tbody>
</table>

*total non-Federal

U.S. Department of Agriculture.
2012 National Resources Inventory.
Enhanced Aquifer Recharge

• EAR is a rural landscape application of aquifer storage and recovery.

• However the main objective is not to store drinking water but to *enhance spring and base flow*, by capturing diffuse flow from the lands surface *during significant rainfall* events, and creating conditions that facilitate infiltration.

• This approach allow for water to be shifted from time of excess to increase availability during times of scarcity
Enhanced Aquifer Recharge (EAR) Concept

Figure 3: Comparison of discharge curves in native and EAR implemented system.

Conditions of excess:
Low value water

Conditions of scarcity:
High value water
Arbuckle-Simpson Aquifer
Pilot Study

Arbuckle-Simpson aquifer is the primary water supply for 100,000 people in southeastern Oklahoma.
Arbuckle-Simpson Aquifer
Pilot Study Area

- GWERD assisted the City of Ada with design and installation of a monitoring well network

- Purpose to *determine amount and impact of recharged water on groundwater quality*

- Collaborators: City of Ada, The Chickasaw Nation, East Central University and Oklahoma State University
Arbuckle-Simpson Aquifer

Pilot Study Area

Result: *Recharge Rate* ~ 1,400 gallons per minute
Impact: > 8 million gallons added to aquifer
Aquifer Storage & Recovery

Project Research Topics

Water Quality

• Geochemical changes in aquifer
• Fate and transport of pathogens or contaminants

Water Quantity

• Recharge rate and volume
Figure 12: Distribution of significant rainfall events in project region.
Figure 9: Potential locations for series recharge structures in run-off basin around EAR demonstration site.
Figure 10: Basic weir design for series recharge structures.
Benefit/Cost

Serial retention/recharge structure approach

<table>
<thead>
<tr>
<th>Valuation Source</th>
<th>High estimate(^3)</th>
<th>Low estimate(^4)</th>
<th>Const. Estimate High(^5)</th>
<th>Const. Estimate Low(^6)</th>
<th>Ratio Worst Case(^7)</th>
<th>Ratio Best Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Rights</td>
<td>$2,250,000</td>
<td>$1,125,000</td>
<td>$320,000</td>
<td>$160,000</td>
<td>3.52</td>
<td>14.06</td>
</tr>
<tr>
<td>Raw water(^1)</td>
<td>$963,330/ year</td>
<td>$481,665/ year</td>
<td>$320,000</td>
<td>$160,000</td>
<td>30.1</td>
<td>120.4</td>
</tr>
<tr>
<td>Raw Water(^2)</td>
<td>$93,594/y year</td>
<td>$46,797/y year</td>
<td>$320,000</td>
<td>$160,000</td>
<td>2.96</td>
<td>11.7</td>
</tr>
</tbody>
</table>

\(^*\) 20 Recharge Structures, 5 or 2.5 ac-ft per event, 15 (1” to 4”) events per year

\(^1\) Based on highest published raw water rates

\(^2\) Based on lowest publish raw water rate

\(^3\) 100% infiltration efficiency of captured water

\(^4\) 50% capture efficiency of captured water

\(^5\) 20 Units, $16,000/each, construction cost

\(^6\) 20 Units, $8,000/each, construction cost

\(^7\) 20 year lifetime, assumes no increase in water rates/price, and available substitutable resources
Current Status

• LS-ASR permit application in preparation
• Working with partners to secure additional EAR/flood control project funding
• EAR demonstration project underway
 – Geochemical monitoring
 – Chemical and biological fate and transport studies
 – Recharge rates and volumes
• Multi-agency ASA II project underway
Project Technical Team

Cody Holcomb, P.E., MBA,
City Manager, City of Ada

Randall R. Ross, Ph.D.
Hydrogeologist, RSKERC, US-EPA

Wayne Kellogg, P.E., P.G., CSP,
Engineer, Geologist, Safety, Chickasaw Nation

Todd Halihan, Ph.D., P.Gp.,
Professor, School of Geology, Oklahoma State University

Guy W. Sewell, Ph.D., BCES,
Director for Research, The Oka’ Institute/ECU